Mark scheme - Cell Division and Specialisation

2 3	i	<i>idea that</i> (some) cells contain incorrect number of chromosomes √	1 (AO 3.1)	e.g. cells do not contain the diploid number of chromosomes / cells contain different numbers of chromosomes
	i	G1 (checkpoint) AND <i>idea that</i> cells (with damaged DNA) should be stopped from entering the S phase \checkmark G1(checkpoint) AND <i>idea that</i> this is the point where DNA damage is checked \checkmark	1 (AO 3.1)	DO NOT ALLOW G2 (as if this was not working both replication and mitosis would occur)
		Total	2	
2 4	i	G₁ and S and G₂ √	1	 in any order IGNORE G₀, X, Y & Z DO NOT CREDIT if M or C are included Examiner's Comments Most candidates selected the gap and synthesis stages of the cell cycle as comprising interphase. A few made the error of including either mitosis or cytokinesis as well. A lot of candidates thought that X, Y and Z were phases, rather than the checkpoints they were already identified as in the question.
	i	<i>idea that</i> (checking that) DNA has replicated correctly √	1	replicate = duplicate = copy ACCEPT (checking that) the chromosomes have duplicated correctly ACCEPT (checking that) the duplicated chromatids have no faults ACCEPT (checking) for , mutations / damage to DNA / damage to genes / errors in DNA IGNORE genetic material / genetic information IGNORE ref to organelle replication

				Examiner's Comments This question tested candidates' awareness of what happens at the Sphase of the cell cycle. Correct answers focused on checking that the DNA had replicated correctly without mutation. Some answers also made irrelevant reference to the replication of
				organelles.
		Total	2	
		G_1 first growth (phase) \checkmark		
2 5	i	G_2 / second growth or end of / AW, S / synthesis \checkmark	3	
		G_1 / first growth (phase) \checkmark		
	i i	1.3 × 10 ¹¹ √	1	
	i i	(red blood cells) do not contain DNA \checkmark	1	
		Total	5	
2		190 √ √	max 2	If the answer is incorrect or incorrectly rounded, award 1 mark for working: 42÷265 x1200 OR 42÷265 x20 x60 Examiner's Comments part (c) was well answered by most candidates, calculating the answer correctly at 190 minutes. A very few candidates gained one mark only, for incorrect rounding of the final answer. In general, if the working out was correct, the answer was correct.
		Total	2	
2 7	i	Q√	1	If an additional incorrect answer is given = 0 marks Examiner's Comments Most candidates correctly identified cell Q.
	i i	1 it / P, needs to synthesise / contains / has, more DNA / longer DNA / more genetic material / more	1	1 CREDIT ref to P being polyploid CREDIT ref to P being diploid and Q being haploid ACCEPT <i>idea of</i> has more DNA to repair after G ₁

		chromosomes √		checkpoint
		2 AVP √		 2 e.g. ref to P being from an organism at a lower temperature P has a lower metabolic rate ora IGNORE replicating organelles Examiner's Comments Some excellent answers were seen to this question. Candidates were expected to refer to DNA and so references to P being a complex cell without further qualification were not credited.
	i i i	 <i>two from</i> 1 it spends all of its time in / does not leave, G₁ or it spends all of its time in / does not leave, G₀ √ 2 (so) it is not, dividing / replicating / undergoing mitosis √ 3 specialised / differentiated √ 4 AVP √ 	2	 DO NOT CREDIT most of the time in, G₁ / G₀ ACCEPT 'has been sent into G₀' IGNORE 'is in G₁' as this restates what is in the table IGNORE ref to interphase ACCEPT ref to having reached the end of its development e.g. of differentiated cell – erythrocyte / neurone / B memory cell etc damage has been detected in G₁ (so cannot progress) is dormant nutrients / size, not right to enter growth phase IGNORE is a stem cell / cancer / dead / apoptosis Examiner's Comments Some candidates incorrectly thought the cell would be dead but there were plenty of good answers to this question with ideas of differentiation and specialisation and suggestions of examples of cells that cell R could be. There were a number of alternatives on the mark scheme to reflect the wide range of potential correct answers.
		Total	4	
2 8		В	1(A 01.1)	

		Total	1	
2 9	i	224 √	1 AO2 .2	haploid number = 28 x 2 for diploid number = 56 x 2 after DNA replication = 112 x 2 strands per molecule = 224
	i i	a cross drawn anywhere between sporophyte and spores \checkmark	1 AO2 .5	
	i i	<pre>many mitochondria √ to supply , energy / ATP , for movement √ OR enzymes / acrosome √ (enzymes) to , penetrate / AW , egg √</pre>	2 AO2 .1	Mark the first suggestion given but ignore partially achieved marking points DO NOT CREDIT make energy ALLOW to digest outer layer / break through membrane DO NOT CREDIT break down egg cell wall
		Total	4	
3 0	i	laser scanni ng confoc al micros copescanni ng electro n micros copetransmi ssion electro n micros copemaxim um resolut ionaaimage appear ance3D2Dnamed oslawrblack	,	Mark each row
		image colour / black colour coloure d white √	,	
	i	larger number of (named) organelles √ more DNA / larger nucleus √ no visible chromosomes √ nuclear membrane present √	2 max	ALLOW twice as much DNA
		Total	4	

3			1	Examiner's Comments
1		D√	(AO 1.1)	Most candidates were able to answer this correctly.
		Total	1	
3 2		D√	1	Examiner's Comments There were many correct responses to this question with candidates recognising the use of chromosome number to indicate the doubling and halving of DNA proportion in mitosis and meiosis.
		Total	1	
		If cell B is measured and formula applied		 Max 1 if given to 1 only or more than 3 sig. fig. Max 1 if no attempt at standard form ALLOW any number that has 17 (± 4) as the first 2 significant figures ALLOW any number has 22 (± 4) as the first 2 significant figures
3	i	 1.7 (± 0.4) or If working back from information given about cell A 2.2 (± 0.4) √√ 	3 (AO 2.8)	If answer is incorrect, ALLOW 1 mark for evidence of r = 16 (± 1) mm
		(number less than 10) ×10 ⁴ (μm^3) \checkmark		converting units, or measuring using the correct units, and answered with incorrect and implausible orders of magnitude. Many candidates did not appear to realise that their answer should be quite close to the size of cell A, which was given.
		<i>light (microscope) because</i> magnification , (only) 1000 / < 2000 / within LM range √ colour visible √ (other) subcellular structures / (named) organelles , not visible √ wide field of view √	2 (AO 3.1)	Electron microscope = 0 marks ALLOW not black & white IGNORE stain / dye ALLOW whole cell visible IGNORE refs to resolution unqualified Examiner's Comments

				Most candidates were aware that it was a light microscope and then achieved 1 or 2 marks, usually for reference to magnification or colour. A number of uncredited responses mentioned the cells being alive, which was not obvious from the image, or the 2D nature of the image, which is not an exclusive feature of light microscopes. A number of candidates incorrectly identified the electron microscope as the source of images and a small minority suggested laser scanning confocal microscopes.
	i i	any two from asexual / vegetative , reproduction (development of) body plan proliferation of white blood cells producing gametes from haploid cells production of <u>new</u> stem cells √	1 (AO 1.2)	 1 ALLOW cloning 2 IGNORE embryonic development 3 CREDIT e.g. clonal expansion 4 IGNORE gamete production unqualified Examiner's Comments This question required candidates to bring together their learning from different areas of the specification. Many candidates were able to give asexual reproduction as a response but most struggled to find a second example. Body plan and clonal expansion were the most common additional creditworthy responses.
		Total	6	
3 4	i	prophase then metaphase then anaphase then telophase $\surd\checkmark$	2 AO1 .2	MAX 1 if interphase or cytokinesis mentioned ALLOW 1 mark if phases named correctly but not in correct order
	i	genetically identical offspring √ offspring produced , rapidly / in large numbers √ (all) offspring will , find conditions favourable / have same adaptations √		IGNORE clones ALLOW produces more offspring ALLOW finding mate requires , time / energy ALLOW population can increase rapidly IGNORE 'quicker' without some qualification
		Total	4	
3 5	i	<u>metaphase</u> √	1 (AO 1.2)	IGNORE 1 / 2 Examiner's Comments

		Almost all candidates got this right. A few wrote
single cell and ≥ 60 mm horizontal diameter and some attempt to draw chromosomes as in Fig. 16 √ and broadly circular clear continuous lines (on chromosomes and membrane) √ ruled label lines (touching correct feature) √ chromosome(s) and cytoplasm labelled √ colour of any of above mentioned (as annotation) √	4 max/ (AO 1.1) (AO 2.3)	 prophase or anaphase. 1 Set measuring tool to 60 mm 1 DO NOT CREDIT if all chromosomes represented as a single line or shaded 2 IGNORE minor errors if it is clear candidate has attempted to draw continuous lines 3 DO NOT CREDIT arrows 4 ALLOW chromatids 4 IGNORE membrane / centromere / equator / pole / metaphase plate 4 DO NOT CREDIT if any other structures are drawn or labelled 4 DO NOT CREDIT if labels written on part of diagram 5 ALLOW e.g. chromosomes are dark Examiner's Comments The quality of diagrams was very variable. Less than 1 in 5 candidates achieved full marks. Although most diagrams were large enough, many candidates drew a generic textbook-style image of metaphase with no attempt to draw the chromosomes visible on the insert. Chromosomes were too often drawn as single lines and candidates often added in structures that they could not see but assumed to be there, e.g. spindle fibres and centrioles. Structures were usually labelled correctly but many candidates did not use a ruler or used label lines with an arrowhead. Many candidates omitted to label the cytoplasm. Very few responses mentioned colour in the annotations and those that did had often achieved the other 4 marks anyway. Exemplar 1

				 cells intelophase' 'a difference of 20 in prophase and 23 in telophase' ACCEPT answers referring to speed rather than no. of cells (i.e. W spends longer in prophase but less time in telophase etc) DO NOT CREDIT if Metaphase and/or Anaphase are suggested Examiner's Comments This question tested candidates' ability to scan a set of data and select the significant differences. The mark was not awarded if only one of prophase or telophase was discussed. The difference neededto be qualified as more in prophase and less in telophase for cell W, or calculated figure differences for both stages needed to be given.
	ii	t-test compares two (or more) means or <i>idea that this</i> data does not include mean(s) or cannot calculate mean from this data or cannot calculate SD from this data √	1	 CREDIT ref to not being a normal distribution / is not continuous data / is discrete data ACCEPT the idea that there are more than 2 categories IGNORE ref to 'average' instead of 'mean' Examiner's Comments There was wide variation in candidates' familiarity with the Student's t-test. Most correct answers referred to the need for comparing or calculating means for this test. Some stated that the test could only be used for calculations relating to biodiversity, as this had presumably been the context in which it had been taught.
b	i	<i>calculation</i> X ² = 13.835 or 13.833 or 13.834 √ √ √	3	Correct value of x ² = 3 marks Answer should be to 3 dp to be consistent with the rest of the table. If answer unrounded or over- rounded but otherwise correct, max 2

T	T		r –	ſ						-
				Cells	0	Е	(O-E)	$(O - E)^{2}$	$\frac{(\mathbf{O}-\mathbf{E})^2}{\mathbf{E}}$	
				In prophase	85	65	20	400	6.154	
				In metaphase	59	55	4	16	0.291]
				In anaphase	6	7	-1	1	0.143	
				In telophase	50	73	- 23	529	7.247	
				Total	200	200			13.835	
					ark for nalise f from in o r's Co equared es, who on aspe	r x ² the sancorre mme d test o were ect of	ame typ ect row v nts was wel e clearly the test.	e of err alue(s) I done b well-pre It was c	or once by a great pared for clear, ho	ALLOW at many or the wever, that
				however, this ques given to t	ef. the tion]. T assist tion as hree d n give	mathe The so and the samp ecima n to th oundin	ematical caffolding em in co ole figure al places nree dec ng figure	requirer g provide mpleting es in the , answe imal pla es incorr	ments in ed in the g the cal last col rs shoul ces. The ectly or	the AS e question, culation. In umn were d also e common thinking
	i i	3 (degrees of freedom) √	1	Examine Most can correctly	didate	s follo	wed the		•	
Ĩ		Any statement(s) made must be correct for the candidate's responses to (i)and (ii).		ALLOW using the (ii).						.,
	i	<i>two from</i> 1 calculated value is, > /		Degree	s of		Pr	obability (p)		
	- 1	greater than, 7.82 / the critical value	2	freedo	om 0.	.99	0.95	0.05	0.01	0.001
	i	•		1		.00	0.00	3.84 5.99	6.64 9.21	10.83
	i i	at p = 0.05 / the value for (p =) 0.05			0.		0.10			13.92
	i i	at p = 0.05 / the value for (p =) 0.05 or		2		.11	0.35	7.82	11.35	13.82 16.27
	i i	,			0.					
	i i	or 7.82 / the critical value at $p = 0.05$ /		3 4 5	0.	.11 .30 .55	0.35 0.71 1.15	7.82 9.49 11.07	11.35 13.28 15.09	16.27 18.47 20.52
	i i	or		3	0.	.11 .30	0.35 0.71	7.82 9.49	11.35 13.28	16.27 18.47

		 2 (difference / deviation) is, significant / not due to chance √ 3 95% certain that the results are not due to chance or difference would only occur by chance 5% of the time √ 4 (difference / deviation) also significant at p = 0.01 value or 99% certain that the results are not due to chance or 99% certain that the results are not due to chance or 99% certain that the results are not due to chance or year and the time or value is, > / greater than, p = 0.01 / 11.35 or probability is, < / less than, 0.01 or probability is not significant at p = 0.001 √ 5 the null hypothesis can be rejected√ 		For incorrect x^2 and degrees of freedom values, apply mark points 1 to 5 to correspond to their results. Examiner's Comments As might be expected, this part of the question proved to be the most challenging. Comparing the calculated value of chi-squared with a statistical table to draw a conclusion was the weakest step in the mental processing. There are many ways of expressing the conclusion that can be drawn from a chi-squared procedure and the mark scheme gives an exhaustive list of examples for use in teaching. Candidates who got parts (e)(i) and / or (e)(ii) wrong were not disadvantaged at this stage, as conclusions were marked based on their figures. The crucial piece of understanding that was missing from wrong answers is that the probability in the column headings is the probability of this amount of deviation (difference) occurring by chance. The use of $p = 0.05$ as the critical value is central to the interpretation. It may also help to explain to students that the smaller the chi-squared value, the better the fit of the two sets of data.
		Total	8	
3 7	a i	R, Q, S, P √	1	Examiner's Comments Most candidates answered this very well using the letters provided. The most common incorrect answer was putting Q first, followed by S, P, R - an understandable error if you thought that R was one of the two daughter cells.
	i	<u>chromosomes / centromeres,</u> aligning on, equator / mitotic plate / metaphase plate (of cell) √ <u>chromatids</u> either side of, equator / mitotic plate / metaphase plate √	max 2	ALLOW centre / middle, of cell in mp 1 & 2 ALLOW microtubules for spindle fibres

	, , , , , , , , , , , , , , , , , , ,			
				booklet' available at:
				https:/www.ocr.org.uk/Images/251799-biology-drawing- skills-handbook.pdf Centres should take guidance from the PAG activity 1.1 in which an example of how to draw a cell during mitosis is provided:
				https:/interchange.ocr.org.uk/Modules/ControlledMaterials/ControlledMaterialsGCEFrom2015.aspx
				Exemplar 3
				sister chromatids being pulled apart : icentricks metaphale plate- ispindle Hibre ! ip ceusonfale membrane. [3]
				This was a well-drawn diagram. The candidate recognised that there were at least five pairs of chromosomes; these were not drawn in a suitable V- shape. The label lines were drawn with a ruler and touched the appropriate part of the diagram; they shouldn't have arrow heads on the label lines.
				Exemplar 4
				centriole B & centronale B & centriole B & rubuln threcols. B & chromatid [3]
				This was a well-drawn diagram. The chromosomes are clear, the label lines are drawn with a ruler and the labels are correct. The only criticism would be that the candidate has drawn centromeres which were not visible in the image provided.
		Total	6	
3		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.	6 (AO 2.5)	Indicative scientific points (including details in bold) may include (but are not limited to): <i>Cell C:</i>
8		<i>In summary:</i> Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.)	(AO 2.7)	 Prophase Chromosomes condense Chromosomes have become visible (but are unordered)

Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, **Level 1**, **Level 2** or **Level 3**, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the **Communication Statement** (shown in italics):

- award the higher mark where the Communication Statement has been met.
- award the lower mark where aspects of the Communication Statement have been missed.
- The science content determines the level.
- The Communication Statement determines the mark within a level.

Level 3 (5-6 marks)

Describes in detail, with no major errors, the stages of mitosis in all three cells.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3-4 marks)

Describes, with few errors or omissions, the stages of mitosis in all three cells.

OR

Describes in detail, with no major errors, at least two cells.

There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks)

• Nuclear envelope and nucleolus have disappeared

Cell D:

- (Early) anaphase
- Spindle fibres are shortening
- Chromatids are separating and are being pulled to opposite sides of the cell

Cell E:

- (Late) telophase
- Chromatids have been pulled to opposite sides of the cell
- A new cell membrane is visible down the centre of the cell
- Cytokinesis / the cell is beginning to divide

Examiner's Comments

Limited understanding of the cell cycle and the checkpoints in the cell cycle resulted in few candidates scoring full marks in (b)(i) and (b)(ii). The wording in (b)(ii) 'cells with chromosomes that had been replicated despite containing damaged DNA' indicates that the relevant checkpoint is G1 rather than G2. This is because the DNA damage was present before replication in the S phase, but this was not discovered. Few candidates scored full marks in (d)(i) as many candidates were uncertain about the difference between using evidence to evaluate a statement, rather than just describing what the graph showed. Although there was often some attempt to discuss the evidence for and against the statement, many only quoted evidence for their own conclusion either agreeing with the statement or providing evidence against it. Many candidates did not realise the growth curve had a logarithmic scale for the number of cells in the culture, and so did not realise that the growth curve did have an exponential growth phase present (between day 1 and 2). Many candidates could then not convert the log10 number of cells from the graph to estimate the number of bacterial cells present on day 1 for (d)(ii). Candidates could often not describe a procedure to estimate bacterial population in (d)(iii), with few candidates suggesting the use of serial dilutions or the idea of scaling up the count from a serial dilution. Many candidates correctly suggested growing bacteria on

	 chromosomes / chromatids, visible / condensed ✓ chromosomes not, 		 (as question states meiosis I) Examiner's Comments Most students could correctly identify that the cell was in prophase. Anaphase was the most common incorrect answer. A few mistakenly referred to prophase 2, which did not gain the mark. Mark the first 2 answers Needs to be a clear statement ACCEPT chromosomes,
i	organised / yet aligned / arranged OR chromosomes not at, ends / equator √	2 max	 ACCEPT nuclear membrane starting to disappear DO NOT ACCEPT nuclear membrane has disappeared Examiner's Comments Many candidates observed that the chromosomes were condensed or visible, and were not yet organised or at the equator of the cell. The presence of the nuclear membrane was also noted but a number of candidates failed to gain this mark by thinking that it had disappeared. Many candidates answered in terms of crossing over. The absence of the nucleolus was rarely offered by candidates.
1 1 1	 independent / random, <u>assortment</u> √ (homologous chromosomes) line up, across the centre of the cell / on the equator / on the metaphase plate √ maternal or paternal chromosomes / either one of the homologous pair, can end up, facing either pole / in either (daughter) cell √ 	3 max	4 ACCEPT if described in terms of chromatids being genetically different

		4. each chromosome of the homologous pair, is genetically different / contains different alleles / contains different gene variant √		Examiner's Comments The responses to this question were variable, the best candidates were able to confidently describe how the process of independent assortment led to variation, while other candidates struggled to describe how the random alignment of the homologous pairs of chromosomes gives new combinations of the original maternal and paternal chromosomes in the gamete mother cell. In many cases there was no clear idea of which chromosomes were facing either side or pole of the cell – better use of the terms maternal and paternal would have helped. Few supported their description with a simple diagram, which would have clarified an otherwise vague answer. Many did not seem clear that pairs of chromosomes were lining up at the equator, often referring to chromosomes randomly lining up. Explaining the genetic variation was generally done poorly, with reference to crossing over but vague descriptions of the actual outcome.
		Total	6	
4 2		B √ C √ B √	3	If two or more letters given, 0 mark Examiner's Comments The majority of candidates were able to gain at least one mark in Q19(a) and the gap fill in Q19(b) enabled the majority of candidates to show their knowledge about DNA structure gaining at least three out of the four marks available.
		Total	3	
43	i	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown	6 AO1 .1 AO1 .2 AO2 .5	Indicative points include AO1.1 Demonstrate knowledge and understanding of scientific ideas genetic variation is the variety of alleles offspring have alleles from more than one parent random fertilisation meiosis produces genetically unique gametes AO1.2 Demonstrate knowledge and understanding of scientific processes crossing over in prophase 1 alleles swapped between non-sister chromatids base sequence of chromosomes altered independent assortment / random segregation

in italics):	 in metaphase 1 also relevant in metaphase 2 if crossing over has occurred
○ award the higher mark	
where the Communication	AO2.5 Apply knowledge and understanding of scientific
Statement has been met.	processes in a theoretical context when handling
 ○ award the lower mark 	qualitative data
where aspects of the	quantativo data
Communication Statement	• the sperm from one <i>Hydra</i> can fertilise an egg
have been missed.	from any other individual Hydra
have been missed.	 the two <i>Hydra</i> can have different alleles
The science content	 sperm carried in water
determines the level.	might travel large distances
The Communication	 to unrelated Hydra
Statement determines the	
mark within a level.	
Level 3 (5–6 marks)	
Explains in detail how sexual	
reproduction leads to genetic	
variation with reference to more than	
one stage of meiosis and with	
reference to Hydra.	
,	
There is a well-developed line of	
reasoning which is clear and	
logically structured. The information	
presented is relevant and	
substantiated.	
Level 2 (3–4 marks)	
Explains in some detail how sexual	
reproduction leads to genetic	
variation with reference to more than	
one stage of meiosis OR with	
reference to Hydra and one stage of	
meiosis.	
There is a line of reasoning	
presented with some structure. The	
<i>.</i> <i>information presented is in the most-</i>	
part relevant and supported by some	
evidence.	
Level 1 (1–2 marks)	
Mentions more than one reason why	
sexual reproduction leads to genetic	
variation.	
The information is basic and	
communicated in an unstructured	

	 way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit. (some offspring) might survive unfavourable conditions √ (some) offspring have useful alleles √ (named) unfavourable conditions mean (all) offspring might die (if asexual) √ 	1 max AO2 .1	IGNORE eggs can lie dormant as stated in question IGNORE less susceptible to unfavourable conditions
	Total	7	
4 4	mitosismeiosisA \checkmark B \checkmark C \checkmark mitosismeiosisD \checkmark E \checkmark	3	Only credit 1 tick on each row. IGNORE crosses A ALLOW a tick for mitosis instead of meiosis Mark A, B & C together to max 2 3 correct answers = 2 marks 2 correct answers = 1 mark 1 or 0 correct answers = 0 marks 1 \times = max 12 \times = 0 marks Mark D & E together to max 1 2 correct answers = 1 mark 1 or 0 correct answers = 0 marks 1 \times = 0 marks Examiner's Comments Most candidates struggled to apply their knowledge of mitosis and meiosis in the unfamiliar context of two life cycle diagrams. The most frequent mark to be awarded was for recognising that stage C represented mitosis and that A could be either meiosis or mitosis. Candidates almost universally made the mistake of naming meiosis as producing the gametes in the sporophyte plant life cycle. They made the same mistake at step D for the stage between a haploid organism and its gametes. The association of meiosis with gametes in candidates' thinking clearly over-rides any understanding of the reduction or maintenance of chromosome numbers. The instruction was clear that 'a'

					tick was needed in each row, but a number of
					candidates put two ticks in some rows.
			Total	3	
4 5			 (produced) in, meristems / cambium √ (by) differentiation (from stem cells) √ 	2 (AO 1.2)	ALLOW specialised IGNORE mitosis
			Total	2	
4 6		i	(opsonin) binds to antigen on pathogen and, assists binding / binds, to phagocyte	1	
		i i	<i>any one:</i> well-developed cytoskeleton (1) many lysosomes (1) many mitochondria (1) lobed nucleus (1)	1	
			Total	2	
4 7	а		synthesise (a lot of) haemoglobin (1) remove / digest, (named) organelles associated with protein synthesis (1)	2	ACCEPT nucleus, ribosomes, rough ER
	Ь		 (can be grown into different tissues to) test how effective new medicinal drugs are (1) (can be grown into different tissues to) test for side effects / toxicity of new drugs (1) (can be grown and) studied to see how they develop into different cell types (developmental research) (1) cell function can be studied to find out what can make it fail to work properly in certain (named) diseases (1) 	3	e.g. cancer
	с		muscle tissue is a group of cells which contract together (1) a muscle is an organ that consists of muscle tissue and other (named) tissues working together (1)	2	Other named tissues could include: nervous tissue, blood, connective tissue

		Total		7	
4 8		D√		1	
		Total		1	
49	i	surface area: volume ratio too s √ <i>idea of</i> diffusion from outer surf not sufficient √ (transport system) ensures molecules / nutrients / sugars / water, reach all tissues s √ (allows) high metabolic rate √	face	2 max	
	i	CellLocationGuard cellLeafCompanion cellVascular tissue / phloem / next to sieve tubeRoot hair cellroots	Examp a subst transpo carb dioxi Sucro Nitrate	3	
		Total		5	
50		organ is collection / AW, of <u>tissues</u> ✓ perform / carry out / adapted to, function / role ✓ <i>leaves have</i> two from: epidermis / spongy mesophyll / palisade mesophyll / vascular / phloem / xylem, (tissues) ✓ (to carry out) photosynthesis / gaseous exchange ✓		4	IGNORE cells throughout ALLOW working together IGNORE mesophyll (unqualified) IGNORE stomata Examiner's Comments Q18(d) was generally well-answered with xylem and phloem being the most commonly referred to tissues.
		Total		4	
5 1	i	1 have already / are, differentia specialized (so cannot divide	ated / e) √	3 max	

		 are in, G₀ (phase of cell cycle) / resting phase √ <i>idea that</i> shape is (too), irregular / asymmetrical (so cannot divide) √ cytoskeleton cannot function / spindle (fibres) cannot form√ (if mitosis occurred) it would alter, number / size, of the, gaps / fenestrations √ <i>idea that it</i> would alter an aspect of ultrafiltration √ 		ALLOW cannot pass G1 checkpoint / cannot go into S phase / remains in G1 e.g. (podocyte) has projections (so cannot divide)
				 ALLOW for aspect of ultrafiltration e.g. different sized molecules can pass through e.g. no / less, ultrafiltration e.g. changes rate of ultrafiltration e.g. changes composition of filtrate Examiner's Comments In Q22(c)(i) there were some excellent responses where candidates recognised that podocytes must already be differentiated and so in the G ₀ stage. A surprisingly high number of candidates incorrectly stated that podocytes do not have a nucleus and that this is the reason why they could not undergo mitosis.
		(adult stem cells) are <u>multipotent</u> ✓ (differentiate to) become any <u>cell</u> type within, kidney / nephron (tissue) ✓	2	DO NOT ALLOW totipotent / pluripotent ALLOW (adult stem cells) can, differentiate / specialise Examiner's Comments Many candidates knew that adult stem cells had the ability to differentiate to achieve mark point one in Q22(c)(ii), but some contradicted their response by using the incorrect term, i.e. totipotent or pluripotent.
		Total	5	
52	i	U matrix ✓ W crista(e) / <u>inner</u> (mitochondrial) membrane ✓ Z <u>inter</u> -membrane space ✓	3	IGNORE ETC / ATP synthase / cytochromes ALLOW <u>inter</u> -membranal space Examiner's Comments Q19(c)(i) was generally well-answered although some candidates failed to interpret the diagram correctly and gave totally irrelevant structures as their answers. The most common mistake was failing to identify the inter- membrane space or referring to it as the inner- membrane space.

	i	cyanide, prevents / AW, aerobic respiration AND fluoride, prevents / AW, anaerobic respiration (which also prevents aerobic respiration) √	1	 BOTH statements required for one mark IGNORE 'affects' throughout ALLOW link reaction / Krebs cycle / ETC / oxidative phosphorylation instead of aerobic respiration ALLOW cyanide allows, glycolysis / anaerobic respiration ALLOW prevents, all respiration / both stages of respiration IGNORE lactate fermentation Examiner's CommentsQ19(c)(ii) saw some strong responses with candidates using data to support their answer even though it was not required. Weaker candidates gave vague answers about how fluoride and cyanide 'affected' respiration or repeated the information in the table without attempting a conclusion.
		Total	4	
5 3		A√	1 (AO 1.1)	
		Total	1	
5 4		С	1 (AO 1.2)	
		Total	1	
5	i	embryonic stem cells (are) undifferentiated / not specialised √ (are) a renewing source of cells / AW √ (can) differentiate into any cell <u>type</u> (of the developing foetus) √	2 max (AO 1.2)	ALLOW have ability to divide continually ALLOW can form all <u>types</u> of cells
	i	not totipotent stem cells as cannot form whole organism √ cannot give rise to extra-embryonic tissues / AW √	2 max (AO 2.1)	ALLOW are pluripotent ALLOW cannot form any, cell / tissue, type Eg have already differentiated a bit (into embryo cells) e.g. umbilicus / placenta / amnion

		named example of tissue not formed \checkmark		
		Total	4	
5 6	i	C and F and I and J √	1 AO1 .2	ALLOW the correct terms written instead of letters
	i	I and J √	1 AO1 .1	ALLOW the correct terms written instead of letters
	i i	A and E and G and H \checkmark	1 AO1 .2	ALLOW the correct terms written instead of letters
	i	F√	2 AO2	ALLOW mucous membrane IGNORE J
	v	one / few , types of cell performing a function \checkmark	.1 AO1 .1	ALLOW examples of cells involved if one or few types is implied ALLOW similar cells doing the same job
		Total	5	
5 7		A √	1 (AO 1.1)	
		Total	1	
5 8	i	to provide, lots of / much, energy / ATP \checkmark	1 (AO 2.1)	DO NOT ALLOW make / produce energy. ALLOW cell, needs / uses, lots of, energy / ATP
	i	Golgi apparatus √ to, modify / process / package, protein √ ref. vesicles / secretion (of mucus) / exocytosis √	2 max (AO 2.1)	ALLOW smooth endoplasmic reticulum / SER ALLOW lipid / triglyceride, synthesis (for smooth ER)
		Total	3	
		 E1 (erythrocytes / neutrophils, formed in the) spleen C1 (formed in) bone marrow √ 		E1 ALLOW erythrocytes / neutrophils (formed in the spleen) C1 ALLOW lymphocytes (are formed in spleen)
5 9	i	 E2 (ciliated epithelial cells in) blood vessels C2 in, trachea / bronchi / bronchioles / airways / lungs / respiratory system / oviducts / central canal of spinal 	3 (AO 2.1)	E2 ALLOW ciliated (epithelial cells in blood vessels) C2 ALLOW squamous (epithelial / endothelial, cells in blood vessels) DO NOT ALLOW digestive system / ileum
		cord √		E3 ALLOW (cell wall thickest) on side furthest from

	E3 cell wall thickest (on side furthest from stoma) C3 cell wall thin(ner) (on side furthest from stoma) √		stoma C3 ALLOW (cell wall thick(er)) on, inner side / side nearest stoma
i	FIRST CHECK ANSWER ON ANSWER LINE correct answer = 2 marks $35.7 \checkmark \checkmark$ 1 mark for working if final answer wrong: (normal production = 1.6 x 73 x 24) = 2803.2 / 2803 \checkmark or (difference = 3804 - 2803.2) = 1000.8 / 1001 \checkmark Eor answers marked by levels of	2 (AO 2.6)	ALLOW figure in range 35.4 – 36 with up to 3 dp correct for working shown ALLOW (hospital production rate = 3804 ÷ (73 x 24)) = 2.17 or ALLOW (difference in rate = 2.17 – 1.6) = 0.57 Indicative scientific points may include the
ii	For answers marked by levels of response: Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme. Once the level is located, award the higher or lower mark. The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met. The lower mark should be awarded	6 max (AO 1.1)	Indicative scientific points may include the following: erythrocyte / red blood cell biconcave / flattened, disc no nucleus contain haemoglobin flexible shape 7.5 μm diameter 2.0 μm thick ref. contain carbonic anhydrase transport oxygen transport carbon dioxide move / squeeze, through, blood vessels / capillaries space for, oxygen / haemoglobin, maximised large surface area to volume ratio short diffusion distance to, centre of cell / all haemoglobin neutrophil / white blood cell granular cytoplasm many lysosomes hydrolytic / digestive, enzymes can change shape / diapedesis / phagocytosis 10-14 μm diameter immune response innate / non-specific / inflammation destroy / engulf, (named) pathogens / bacteria move to site of infection / wound

where the level descriptor has been
 evidenced but aspects of the
 communication statement (in italics)
 are missing.
 In summary:

- The science content determines the level.
- The communication statement determines the mark within a level.

Level 3 (5-6 marks)

Full and detailed description of how each cell's specialised structure is suited to function: erythrocytes, neutrophils, squamous (epithelial) cells and ciliated (epithelial) cells.

Candidate demonstrates a good understanding of the specialised features in **all** of these cells, **and** how these features make the cells suited to their specific function.

There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative.

Level 2 (3-4 marks)

A correct feature for each type of cell stated and linked to function of cell.

There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant.

Level 1 (1–2 marks) Some features correctly linked to a cell type. The linking of structure to function in outline only.

The information is communicated

squamous (epithelial cells) flattened shape

very thin / (form layer) one cell thick fit together, tightly / like a pavement for rapid diffusion / short diffusion distance of, oxygen / carbon dioxide / gases, at alveoli / lungs / blood vessels

ciliated (epithelial cells)

have cilia / 'hair like' structures which, move / beat in rhythm to move mucus and trapped, pathogens / dust / debris from, lungs / (named) airways to move, ovum / egg from ovary / to uterus / to site of fertilisation to move cerebrospinal fluid / ventricular fluid multilobed nucleus

Examiner's Comments

On this question candidates varied in their knowledge of the features of a good biological drawing, but the main guidelines (title, scale, no shading, do not overlap label lines) are easily taught.

OCR support

The Biology Drawing skills handbook provides support with this:

https:/www.ocr.org.uk/Images/251799-biology-drawingskills-handbook.pdf

6 0	a	i	with only a little structure. Communication is hampered by the inappropriate use of technical terms. 0 marks No response or no response worthy of credit. Total (similar) cells working together with, common / same / similar, (named)	11	Need to see both 'working together' and 'same function' The named function must be storage of starch or photosynthesis Examiner's Comments
			function √		This question is asking for a definition of a tissue in the context of the parenchyma. Many candidates gave a detailed definition although some candidates did not include the idea that the cells are working together.
		i	Q is phloem √ S is xylem √	2	Examiner's Comments This question should have been straightforward recall for candidates that were familiar with images or slides showing a cross section of a stem. Most candidates managed to interpret the photomicrograph accurately. Some less able candidates named other tissues and were presumably simply writing any name they could recall.
	b		cambium / meristem(atic)	1	Examiner's Comments Again, the majority of candidates were able to name the cambium or stated 'meristem'.
			Total	4	
6			2 max for sources embryonic / embryo \checkmark fetus / fetal \checkmark umbilical cord (blood) \checkmark (adult) bone marrow (tissue) \checkmark convert somatic cell into pluripotent cell \checkmark	2 max	ACCEPT e.g. breast milk / muscle / liver / placenta / etc. ACCEPT blastocyst
			ethical issue – must relate to one of their stated sources	2	Note: list of issues is not exhaustive – credit a well expressed issue

 ethical issue identified – such as 1 from the list below √ <i>embryonic</i> E1 embryo, destroyed / killed / discarded E2 use of excess embryos from assisted fertilisation or (IVF) or E3 debate about when life begins or E4 embryo cannot give consent or F1 obtained from, miscarried / aborted, fetuses <i>fetal</i> or umbilical cord U1 detached from infant at birth anyway 	F1 IGNORE ref to obtaining fetal stem cells by killing fetus but can still access the judgement mark
or B1 harvesting bone marrow is, painful / risky <i>bone marrow</i> B2 donor babies / or babies conceived specifically to provide a bone marrow transplant for a sibling (with a condition requiring the transplant)	Can only be awarded once the issue relating to one of their sources has been identified. IGNORE 'playing God' as an opinion
a statement indicating, judgement / opinion / understanding, of this ethical issue √	Examiner's Comments Most students were able to identify two correct sources of stem cells and also discuss an ethical issue associated with their use. Some students did not link the ethical issues they were discussing with the source of the stem cells, e.g. confusing embryo with fetus. There was also frequent inclusion of information which was irrelevant to the question, describing the properties of stem cells and why they were used, rather than focusing on naming the sources and discussing the ethics of their use. Most candidates gave embryo and bone marrow as their two sources and discussed (successfully on the whole) the ethics of embryo use. Some mentioned fetal or umbilical sources but incorrectly suggested that the fetus either needed to be killed or cells removed during invasive surgery without realising that they would only be obtained from miscarried or aborted fetuses.

		Total	4	
				Mark first answer only for advantage and disadvantage. A1 DO NOT CREDIT in context of larger surface area ACCEPT 'Hb' for haemoglobin
62	ī	advantages A1 more space for / can contain more / can carry more, haemoglobin / oxygen √ A2 can squeeze through capillaries easily √ disadvantages D1 limited life span / cannot divide / cannot reproduce / cannot undergo mitosis √ D2 no, protein synthesis / repair √ D3 no respiration, in / by, mitochondria or no mitochondria for respiration or limited respiration / no aerobic respiration / only anaerobic respiration √	max 2	D1 max time of 120 days / 4 months D3 DO NOT CREDIT 'no mitochondria so no respiration' (as some respiration will still take place) ACCEPT 'ATP release' or 'energy provided' instead of 'respiration' e.g. no energy being provided from mitochondria ATP is not released by mitochondria DO NOT CREDIT ref to producing / creating, energy Examiner's Comments Most candidates stated that lack of a nucleus left more space for oxygen/haemoglobin but a significant number referred wrongly to an increase in surface area. The short life span of erythrocyte was commonly stated as a disadvantage but very few candidates realised their inability to carry out protein synthesis. Many candidates simply re-stated that erythrocytes had no membrane- bound organelles or a nucleus without any further qualification. A common misunderstanding was that the erythrocyte would be unable to respire, failing to realise that anaerobic respiration does still take place. A significant number said that erythrocytes would be unable to defend themselves from infection without a nucleus, or could not control cell activities or what entered or left the cell.
	i	virus	2	IGNORE ref to the erythrocyte not having membrane- bound organelles without ref to the need of the virus to use them inside the cell
		virus is unable to / cannot, replicate / reproduce, on its own / outside a		Must be a clear statement ACCEPT needs / has to use, host cell to, replicate / reproduce

	host cell orvirus requires host cell, machinery / DNA / RER / ribosomes, for protein synthesis or virus does not contain, RER / ribosomes, for protein synthesis √ 		ACCEPT 'malarial pathogen' for <i>Plasmodium</i> IGNORE eukaryotic / protoctist IGNORE it has its own, DNA / nucleus / protein synthesis apparatus
	<i>idea that Plasmodium is</i> using the host cell to hide from the immune system or for <i>Plasmodium</i> to complete its life cycle or for <i>Plasmodium</i> to use as a source of food (for, growth / reproduction) ✓		IGNORE ref to just, part / stage, of life cycle IGNORE ref to organelles Examiner's Comments This was a challenging question for many, and several failed to specify which organism they were talking about. Candidates often understood that viruses couldn't use erythrocytes for reproduction but failed to make the link that viruses must use the host cell to replicate. Candidates restated the question describing that part of the Plasmodium life cycle took place in the red blood cell but failed to realise it did not complete its life cycle. Commonly, candidates said that the Plasmodium used the erythrocyte for transport and as a source of oxygen. Many candidates spoke of Plasmodium using the erythrocyte because it is injected directly into the blood by the mosquito. Only the most able candidates described how Plasmodium could evade the immune response within the red blood cell.
i i i	 oxygen is bound to haemoglobin (while being transported) ✓ lack mitochondria ✓ (therefore) no aerobic respiration 	2	 ACCEPT 'it' for 'oxygen' ACCEPT 'Hb' for haemoglobin 3 ACCEPT only respires anaerobically IGNORE ref to energy
	4 (moved by mass flow so) doesn't		4 DO NOT CREDIT ⁴ does not need, energy / ATP ² unqualified

		need, energy / ATP, to move orneeds less, energy / ATP (for metabolic processes) ✓		DO NOT CREDIT 'makes / produces, energy' Examiner's Comments Most candidates scored 1 mark for lack of mitochondria although some candidates just referred to no organelles or no organelles for respiration. Very few candidates made the connection with aerobic respiration and the majority of candidates believed that erythrocytes could not respire at all and just had a completely passive role. Many candidates referred to the pointless nature of using the oxygen that they are supposed to be carrying to other tissues, more of a philosophical attitude than biological one.
		Total	6	
6 3	а	lamella	1	ALLOW lamellae.
	b	<i>three from</i> many / AW, lamellae / structure A, provide large surface area (1) (presence of) secondary lamellae on main lamellae provide large surface area (1) short distance between blood and, water / outside (1) idea that blood maintains diffusion gradient (1) <i>any of above linked to</i> faster diffusion (of oxygen, carbon dioxide) (1)	4	ALLOW only if linked to another marking point. IGNORE refs to squamous cells as not visible on Fig. 1.1.
	с	<i>three from</i> tissue has, one / few, types of cell and performs, one / few, functions (1) <i>idea that</i> bone has, one / few, types of cell or <i>idea that</i> bone performs, one / few, functions (1) organs consist of several tissues (1)	3	
		gills contain two or more named tissues (1)		ALLOW bone, blood, epithelial, connective.

	Total	8
	<i>Type of cell</i> stem (cells) (1)	
6 4	Description - any three from, by differentiation (1) (cell) elongation (1) deposition of lignin / lignification (of cell walls) (1) end walls break down (1)	4
	Total	4