Mark scheme - Cell Division and Specialisation

2 3	i	idea that (some) cells contain incorrect number of chromosomes \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 3.1) \end{gathered}$	e.g. cells do not contain the diploid number of chromosomes / cells contain different numbers of chromosomes
		G1 (checkpoint) AND idea that cells (with damaged DNA) should be stopped from entering the S phase \checkmark G1 (checkpoint) AND idea that this is the point where DNA damage is checked \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 3.1) \end{gathered}$	DO NOT ALLOW G2 (as if this was not working both replication and mitosis would occur)
		Total	2	
$\begin{aligned} & 2 \\ & 4 \end{aligned}$	i	G_{1} and S and $\mathrm{G}_{2} \checkmark$	1	in any order IGNORE Go, X, Y \& Z DO NOT CREDIT if M or C are included Examiner's Comments Most candidates selected the gap and synthesis stages of the cell cycle as comprising interphase. A few made the error of including either mitosis or cytokinesis as well. A lot of candidates thought that X, Y and Z were phases, rather than the checkpoints they were already identified as in the question.
		idea that (checking that) DNA has replicated correctly \checkmark	1	replicate $=$ duplicate $=$ copy ACCEPT (checking that) the chromosomes have duplicated correctly ACCEPT (checking that) the duplicated chromatids have no faults ACCEPT (checking) for , mutations / damage to DNA / damage to genes / errors in DNA IGNORE genetic material / genetic information IGNORE ref to organelle replication

				Examiner's Comments This question tested candidates' awareness of what happens at the Sphase of the cell cycle. Correct answers focused on checking that the DNA had replicated correctly without mutation. Some answers also made irrelevant reference to the replication of organelles.
		Total	2	
$\begin{aligned} & 2 \\ & 5 \end{aligned}$	i	G_{1} first growth (phase) \checkmark G_{2} / second growth or end of / AW, S/synthesis \checkmark $\mathrm{G}_{1} /$ first growth (phase) \checkmark	3	
	i	$1.3 \times 10^{11} \checkmark$	1	
	i i i	(red blood cells) do not contain DNA	1	
		Total	5	
$\begin{aligned} & 2 \\ & 6 \end{aligned}$		$190 \checkmark \checkmark$	$\begin{gathered} \max \\ 2 \end{gathered}$	If the answer is incorrect or incorrectly rounded, award 1 mark for working: $42 \div 265 \times 1200$ OR $42 \div 265 \times 20 \times 60$ Examiner's Comments part (c) was well answered by most candidates, calculating the answer correctly at 190 minutes. A very few candidates gained one mark only, for incorrect rounding of the final answer. In general, if the working out was correct, the answer was correct.
		Total	2	
2	i	Q V	1	If an additional incorrect answer is given = $\mathbf{0}$ marks Examiner's Comments Most candidates correctly identified cell Q .
		1 it / P, needs to synthesise / contains / has, more DNA / longer DNA / more genetic material / more	1	1 CREDIT ref to P being polyploid CREDIT ref to P being diploid and Q being haploid ACCEPT idea of has more DNA to repair after G_{1}

		chromosomes \checkmark $2 \text { AVP } V$		checkpoint 2 e.g. ref to P being from an organism at a lower temperature P has a lower metabolic rate ora IGNORE replicating organelles Examiner's Comments Some excellent answers were seen to this question. Candidates were expected to refer to DNA and so references to P being a complex cell without further qualification were not credited.
	i i i	two from 1 it spends all of its time in / does not leave, G_{1} or it spends all of its time in / does not leave, $G_{0} \checkmark$ 2 (so) it is not, dividing / replicating $/$ undergoing mitosis \checkmark 3 specialised / differentiated \checkmark 4 AVP $\sqrt{ }$	2	1 DO NOT CREDIT most of the time in, $\mathrm{G}_{1} / \mathrm{G}_{0}$ ACCEPT 'has been sent into G_{0} ' IGNORE 'is in G_{1} ' as this restates what is in the table IGNORE ref to interphase 3 ACCEPT ref to having reached the end of its development 4 e.g. of differentiated cell - erythrocyte / neurone / B memory cell etc damage has been detected in G_{1} (so cannot progress) is dormant nutrients / size, not right to enter growth phase IGNORE is a stem cell / cancer / dead / apoptosis Examiner's Comments Some candidates incorrectly thought the cell would be dead but there were plenty of good answers to this question with ideas of differentiation and specialisation and suggestions of examples of cells that cell R could be. There were a number of alternatives on the mark scheme to reflect the wide range of potential correct answers.
		Total	4	
		B	$\begin{gathered} \text { 1(A } \\ 01.1 \\ \text {) } \end{gathered}$	

3	D \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 1.1) \end{gathered}$	Examiner's Comments Most candidates were able to answer this correctly.
	Total	1	
	D \checkmark	1	Examiner's Comments There were many correct responses to this question with candidates recognising the use of chromosome number to indicate the doubling and halving of DNA proportion in mitosis and meiosis.
	Total	1	
	If cell B is measured and formula applied... $1.7(\pm 0.4)$ or If working back from information given about cell $A . .$. $2.2(\pm 0.4) \checkmark \checkmark$ \qquad (number less than 10) $\times 10^{4}$ $\left(\mu m^{3}\right) \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} \\ 2.8) \end{gathered}$	Max 1 if given to 1 only or more than 3 sig. fig. Max 1 if no attempt at standard form ALLOW any number that has $17(\pm 4)$ as the first 2 significant figures ALLOW any number has $22(\pm 4)$ as the first 2 significant figures If answer is incorrect, ALLOW 1 mark for evidence of r $=16(\pm 1) \mathrm{mm}$ Examiner's Comments Around half of candidates could apply the scaling formula correctly and most did answer in standard form. However, many candidates appeared to struggle with converting units, or measuring using the correct units, and answered with incorrect and implausible orders of magnitude. Many candidates did not appear to realise that their answer should be quite close to the size of cell A, which was given.
	light (microscope) because magnification, (only) 1000 / < 2000 / within LM range \checkmark colour visible \checkmark (other) subcellular structures / (named) organelles, not visible \checkmark wide field of view \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} \\ 3.1) \end{gathered}$	Electron microscope $=0$ marks ALLOW not black \& white IGNORE stain / dye ALLOW whole cell visible IGNORE refs to resolution unqualified Examiner's Comments

				Most candidates were aware that it was a light microscope and then achieved 1 or 2 marks, usually for reference to magnification or colour. A number of uncredited responses mentioned the cells being alive, which was not obvious from the image, or the 2D nature of the image, which is not an exclusive feature of light microscopes. A number of candidates incorrectly identified the electron microscope as the source of images and a small minority suggested laser scanning confocal microscopes.

(2)

				response achieves 5 marking points and full marks. Exemplar 3 This response achieves marking points 1 and 4 . Marking point 2 has not been credited because the lines are not clear and continuous and marking point 3 has not been credited because the label lines have arrowheads.
		Total	5	
	a i	W/it, has (many) more cells in prophase and (far) fewer cells in telophase \checkmark	1	CREDIT correct ref to the relative numbers of cells in both phases CREDIT stated correctly calculated differences e.g. 'W has 20 more cells in prophase and 23 less in telophase' 'W has 20 more cells in prophase and V has 23 more

		2 (difference / deviation) is, significant / not due to chance \checkmark 3 95\% certain that the results are not due to chance or difference would only occur by chance 5% of the time \checkmark 4 (difference / deviation) also significant at $p=0.01$ value or 99% certain that the results are not due to chance or difference would only occur by chance 1% of the time or value is, > / greater than, $p=0.01$ / 11.35 or probability is, < / less than, 0.01 or probability is between 0.01 and 0.001 or probability is not significant at $p=$ 0.001 V 5 the null hypothesis can be rejected \checkmark		For incorrect x^{2} and degrees of freedom values, apply mark points 1 to 5 to correspond to their results. Examiner's Comments As might be expected, this part of the question proved to be the most challenging. Comparing the calculated value of chi-squared with a statistical table to draw a conclusion was the weakest step in the mental processing. There are many ways of expressing the conclusion that can be drawn from a chi-squared procedure and the mark scheme gives an exhaustive list of examples for use in teaching. Candidates who got parts (e)(i) and / or (e)(ii) wrong were not disadvantaged at this stage, as conclusions were marked based on their figures. The crucial piece of understanding that was missing from wrong answers is that the probability in the column headings is the probability of this amount of deviation (difference) occurring by chance. The use of $p=0.05$ as the critical value is central to the interpretation. It may also help to explain to students that the smaller the chi-squared value, the better the fit of the two sets of data.
		Total	8	
	a i	R, Q, S, P V	1	Examiner's Comments Most candidates answered this very well using the letters provided. The most common incorrect answer was putting Q first, followed by $S, P, R-$ an understandable error if you thought that R was one of the two daughter cells.
		chromosomes / centromeres, aligning on, equator / mitotic plate / metaphase plate (of cell) \checkmark chromatids either side of, equator / mitotic plate / metaphase plate \checkmark spindle fibres attaching to, chromosome / centromere / pole / centriole $\sqrt{ }$	$\begin{gathered} \max \\ 2 \end{gathered}$	ALLOW centre / middle, of cell in mp 1 \& 2 ALLOW microtubules for spindle fibres Examiner's Comments part(a) (ii) was generally well answered, candidates

| | | | often gained both marks where they correctly identified
 the phase as metaphase. However, a frequent error
 was to identify the stage as prophase and give a
 description of chromosomes condensing and the
 nuclear membrane breaking down. |
| :--- | :--- | :--- | :--- | :--- |
| | | Do Not ALLow if chromosomes vertically aligned e.g. | |
| b | | | |

				booklet' available at: https:/www.ocr.org.uk/Images/251799-biology-drawing- skills-handbook.pdf Centres should take guidance from the PAG activity 1.1 in which an example of how to draw a cell during mitosis is provided: https:/interchange.ocr.org.uk/Modules/ControlledMateri als/ControlledMaterialsGCEFrom2015.aspx Exemplar 3 This was a well-drawn diagram. The candidate recognised that there were at least five pairs of chromosomes; these were not drawn in a suitable V shape. The label lines were drawn with a ruler and touched the appropriate part of the diagram; they shouldn't have arrow heads on the label lines. Exemplar 4 [3] This was a well-drawn diagram. The chromosomes are clear, the label lines are drawn with a ruler and the labels are correct. The only criticism would be that the candidate has drawn centromeres which were not visible in the image provided.
		Total	6	
		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.)	$\begin{gathered} 6 \\ (\mathrm{AO} \\ 2.5) \\ (\mathrm{AO} \\ 2.7) \end{gathered}$	Indicative scientific points (including details in bold) may include (but are not limited to): Cell C: - Prophase - Chromosomes condense - Chromosomes have become visible (but are unordered)

Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics):

- award the higher mark where the Communication Statement has been met.
- award the lower mark where aspects of the Communication Statement have been missed.
- The science content determines the level.
- The Communication Statement determines the mark within a level.

Level 3 (5-6 marks)

Describes in detail, with no major errors, the stages of mitosis in all three cells.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3-4 marks)

Describes, with few errors or omissions, the stages of mitosis in all three cells.
OR
Describes in detail, with no major errors, at least two cells.

There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

- Nuclear envelope and nucleolus have disappeared

Cell D:

- (Early) anaphase
- Spindle fibres are shortening
- Chromatids are separating and are being pulled to opposite sides of the cell

Cell E:

- (Late) telophase
- Chromatids have been pulled to opposite sides of the cell
- A new cell membrane is visible down the centre of the cell
- Cytokinesis / the cell is beginning to divide

Examiner's Comments

Limited understanding of the cell cycle and the checkpoints in the cell cycle resulted in few candidates scoring full marks in (b)(i) and (b)(ii). The wording in (b)(ii) 'cells with chromosomes that had been replicated despite containing damaged DNA' indicates that the relevant checkpoint is G 1 rather than G 2 . This is because the DNA damage was present before replication in the S phase, but this was not discovered. Few candidates scored full marks in (d)(i) as many candidates were uncertain about the difference between using evidence to evaluate a statement, rather than just describing what the graph showed. Although there was often some attempt to discuss the evidence for and against the statement, many only quoted evidence for their own conclusion either agreeing with the statement or providing evidence against it. Many candidates did not realise the growth curve had a logarithmic scale for the number of cells in the culture, and so did not realise that the growth curve did have an exponential growth phase present (between day 1 and
2). Many candidates could then not convert the log10 number of cells from the graph to estimate the number of bacterial cells present on day 1 for (d)(ii). Candidates could often not describe a procedure to estimate bacterial population in (d)(iii), with few candidates suggesting the use of serial dilutions or the idea of scaling up the count from a serial dilution. Many candidates correctly suggested growing bacteria on

		Describes the stages of mitosis, with some errors, in at least one cell. OR Describes stages of mitosis with no link to cells in question There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		agar plates, but then mistakenly believed that you were counting individual bacteria from these plates, rather than counting the colonies of bacteria. AfL Candidates should be encouraged to set out their working clearly, rather than just writing down final answer in calculations involving multiple steps. This would help candidates to gain 1or 2 marks for correct steps in the calculation even if the final answer is incorrect. Practice at reading logarithmic scales from growth curves and using readings to estimate the number of bacteria grown over a certain length of time would also be useful, as would practice at converting between numbers in standard and ordinary form. See Maths for Biology and Maths skills handbook.
		Total	6	
$\begin{aligned} & 3 \\ & 9 \end{aligned}$		(mitosis) for growth (of zygote / embryo) \checkmark (which needs) genetically identical cells \checkmark (not meiosis as) gametes / haploid cells not produced \checkmark	$\begin{gathered} 2 \\ \max \\ (\mathrm{AO} \\ 1.2) \end{gathered}$	ALLOW identical genetic information ALLOW ORA ALLOW diploid cells produced ALLOW there is no halving of chromosome number in mitosis ALLOW meiosis produces haploid cells / gametes / cells with 23 chromosomes
		Total	2	
$\begin{aligned} & 4 \\ & 0 \end{aligned}$		B	1	Examiner's Comments This should have been fairly straightforward for candidates who had seen images of mitosis or who could interpret the image using knowledge from diagrams of the process. A few suggested M, which was not a valid option.
		Total	1	
4 1	i	prophase (1) \checkmark	1	DO NOT ACCEPT prophase II

			(as question states meiosis I) Examiner's Comments Most students could correctly identify that the cell was in prophase. Anaphase was the most common incorrect answer. A few mistakenly referred to prophase 2 , which did not gain the mark.
	1. chromosomes / chromatids, visible / condensed \checkmark 2. chromosomes not, organised / yet aligned / arranged OR chromosomes not at, ends / equator \checkmark 3. nuclear envelope (around chromosomes) / nuclear membrane is present / chromosomes separated from cytoplasm \checkmark 4. no (visible) nucleolus \checkmark	$\begin{gathered} 2 \\ \max \end{gathered}$	Mark the first 2 answers 1. Needs to be a clear statement 2. ACCEPT chromosomes, \&nbs p; in different positions / scattered / \&nb sp; spread out 3. ACCEPT nuclear membrane starting to disappear DO NOT ACCEPT nuclear membrane has disappeared Examiner's Comments Many candidates observed that the chromosomes were condensed or visible, and were not yet organised or at the equator of the cell. The presence of the nuclear membrane was also noted but a number of candidates failed to gain this mark by thinking that it had disappeared. Many candidates answered in terms of crossing over. The absence of the nucleolus was rarely offered by candidates.
	1. independent / random, assortment \checkmark 2. (homologous chromosomes) line up, across the centre of the cell 1 on the equator / on the metaphase plate \checkmark 3. maternal or paternal chromosomes / either one of the homologous pair, can end up, facing either pole / in either (daughter) cell \checkmark	$\begin{gathered} 3 \\ \max \end{gathered}$	4 ACCEPT if described in terms of chromatids being genetically different

	4. each chromosome of the homologous pair, is genetically different / contains different alleles / contains different gene variant \checkmark		Examiner's Comments The responses to this question were variable, the best candidates were able to confidently describe how the process of independent assortment led to variation, while other candidates struggled to describe how the random alignment of the homologous pairs of chromosomes gives new combinations of the original maternal and paternal chromosomes in the gamete mother cell. In many cases there was no clear idea of which chromosomes were facing either side or pole of the cell - better use of the terms maternal and paternal would have helped. Few supported their description with a simple diagram, which would have clarified an otherwise vague answer. Many did not seem clear that pairs of chromosomes were lining up at the equator, often referring to chromosomes randomly lining up. Explaining the genetic variation was generally done poorly, with reference to crossing over but vague descriptions of the actual outcome.
	Total	6	
	B $\sqrt{ }$ C $\sqrt{ }$ B $\sqrt{ }$	3	If two or more letters given, 0 mark Examiner's Comments The majority of candidates were able to gain at least one mark in Q19(a) and the gap fill in Q19(b) enabled the majority of candidates to show their knowledge about DNA structure gaining at least three out of the four marks available.
	Total	3	
	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown	$\begin{gathered} 6 \\ \mathrm{AO} 1 \\ .1 \\ \mathrm{AO} 1 \\ .2 \\ \mathrm{AO} 2 \\ .5 \end{gathered}$	Indicative points include AO1.1 Demonstrate knowledge and understanding of scientific ideas - genetic variation is the variety of alleles - offspring have alleles from more than one parent - random fertilisation - meiosis produces genetically unique gametes AO1.2 Demonstrate knowledge and understanding of scientific processes - crossing over in prophase 1 - alleles swapped between non-sister chromatids - base sequence of chromosomes altered - independent assortment / random segregation

in italics):

- award the higher mark where the Communication Statement has been met.
- award the lower mark where aspects of the Communication Statement have been missed.
- The science content determines the level.
- The Communication Statement determines the mark within a level.

Level 3 (5-6 marks)

Explains in detail how sexual reproduction leads to genetic variation with reference to more than one stage of meiosis and with reference to Hydra.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3-4 marks)
Explains in some detail how sexual reproduction leads to genetic variation with reference to more than one stage of meiosis OR with reference to Hydra and one stage of meiosis.

There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence.

Level 1 (1-2 marks)

Mentions more than one reason why sexual reproduction leads to genetic variation.

The information is basic and communicated in an unstructured

- in metaphase 1
- also relevant in metaphase 2 if crossing over has occurred

AO2.5 Apply knowledge and understanding of scientific processes in a theoretical context when handling qualitative data

- the sperm from one Hydra can fertilise an egg from any other individual Hydra
- the two Hydra can have different alleles
- sperm carried in water
- might travel large distances
- to unrelated Hydra

		way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.				
		(some unfavo (some) \checkmark (name mean asexua)	g) migh condition ing have vourable spring mi	alleles ons (if	$\begin{gathered} 1 \\ \max \\ \mathrm{AO} 2 \\ .1 \end{gathered}$	IGNORE eggs can lie dormant as stated in question IGNORE less susceptible to unfavourable conditions
		Total			7	
4		$\begin{aligned} & \text { A } \\ & \hline \text { B } \\ & \hline \mathbf{C} \end{aligned}$		meiosi \checkmark	3	Only credit 1 tick on each row. IGNORE crosses A ALLOW a tick for mitosis instead of meiosis Mark A, B \& C together to max 2 3 correct answers $=2$ marks 2 correct answers $=1$ mark 1 or 0 correct answers $=0$ marks $1 X=\max 12 X=0$ marks Mark D \& E together to max 1 2 correct answers $=1$ mark 1 or 0 correct answers $=0$ marks $1 \mathrm{X}=0$ marks Examiner's Comments Most candidates struggled to apply their knowledge of mitosis and meiosis in the unfamiliar context of two life cycle diagrams. The most frequent mark to be awarded was for recognising that stage C represented mitosis and that A could be either meiosis or mitosis. Candidates almost universally made the mistake of naming meiosis as producing the gametes in the sporophyte plant life cycle. They made the same mistake at step D for the stage between a haploid organism and its gametes. The association of meiosis with gametes in candidates' thinking clearly over-rides any understanding of the reduction or maintenance of chromosome numbers. The instruction was clear that ' a '

			tick was needed in each row, but a number of candidates put two ticks in some rows.
	Total	3	
4	(produced) in, meristems / cambium \checkmark (by) differentiation (from stem cells) \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} \\ 1.2) \end{gathered}$	ALLOW specialised IGNORE mitosis
	Total	2	
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	(opsonin) binds to antigen on pathogen and, assists binding / binds, to phagocyte	1	
	any one: well-developed cytoskeleton (1) many lysosomes (1) many mitochondria (1) lobed nucleus (1)	1	
	Total	2	
$\begin{aligned} & 4 \\ & 7 \end{aligned}$	synthesise (a lot of) haemoglobin (1) remove / digest, (named) organelles associated with protein synthesis (1)	2	ACCEPT nucleus, ribosomes, rough ER
	(can be grown into different tissues to) test how effective new medicinal drugs are (1) (can be grown into different tissues to) test for side effects / toxicity of new drugs (1) (can be grown and) studied to see how they develop into different cell types (developmental research) (1) cell function can be studied to find out what can make it fail to work properly in certain (named) diseases (1)	3	e.g. cancer
	muscle tissue is a group of cells which contract together (1) a muscle is an organ that consists of muscle tissue and other (named) tissues working together (1)	2	Other named tissues could include: nervous tissue, blood, connective tissue

	i	cyanide, prevents / AW, aerobic respiration AND fluoride, prevents / AW, anaerobic respiration (which also prevents aerobic respiration) \checkmark	1	BOTH statements required for one mark IGNORE 'affects' throughout ALLOW link reaction / Krebs cycle / ETC / oxidative phosphorylation instead of aerobic respiration ALLOW cyanide allows, glycolysis / anaerobic respiration ALLOW prevents, all respiration / both stages of respiration IGNORE lactate fermentation Examiner's CommentsQ19(c)(ii) saw some strong responses with candidates using data to support their answer even though it was not required. Weaker candidates gave vague answers about how fluoride and cyanide 'affected' respiration or repeated the information in the table without attempting a conclusion.
		Total	4	
5 3		A $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 1.1) \end{gathered}$	
		Total	1	
5 4		C	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 12 \end{gathered}$	
		Total	1	
		embryonic stem cells (are) undifferentiated / not specialised \checkmark (are) a renewing source of cells / AW \checkmark (can) differentiate into any cell type (of the developing foetus) \checkmark	$\begin{array}{\|c\|} \hline 2 \\ \max \\ \text { (AO } \\ 1.2) \end{array}$	ALLOW have ability to divide continually ALLOW can form all types of cells
		not totipotent stem cells as cannot form whole organism \checkmark cannot give rise to extra-embryonic tissues / AW \checkmark	$\begin{array}{\|c\|} \hline 2 \\ \max \\ (\mathrm{AO} \\ 2.1) \end{array}$	ALLOW are pluripotent ALLOW cannot form any, cell / tissue, type Eg have already differentiated a bit (into embryo cells) e.g. umbilicus / placenta / amnion

		named example of tissue not formed \checkmark		
		Total	4	
5	i	C and F and I and $\mathrm{J} \checkmark$	$\begin{gathered} 1 \\ \text { AO1 } \\ . \end{gathered}$	ALLOW the correct terms written instead of letters
	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$	I and $\mathrm{J} \checkmark$	$\begin{gathered} 1 \\ \text { AO1 } \\ . \end{gathered}$	ALLOW the correct terms written instead of letters
	i	A and E and G and $\mathrm{H} \checkmark$	$\begin{gathered} 1 \\ \text { AO1 } \\ .2 \end{gathered}$	ALLOW the correct terms written instead of letters
	i	F V one / few , types of cell performing a function \checkmark	$\begin{gathered} 2 \\ \text { AO2 } \\ .1 \\ \text { AO1 } \\ .1 \end{gathered}$	ALLOW mucous membrane IGNORE J ALLOW examples of cells involved if one or few types is implied ALLOW similar cells doing the same job
		Total	5	
57		A \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 1.1) \end{gathered}$	
		Total	1	
5	i	to provide, lots of / much, energy / ATP \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 2.1) \end{gathered}$	DO NOT ALLOW make / produce energy. ALLow cell, needs / uses, lots of, energy / ATP
	i	Golgi apparatus \checkmark to, modify / process / package, protein \checkmark ref. vesicles / secretion (of mucus) / exocytosis \checkmark	$\begin{gathered} 2 \\ \max \\ \text { (AO } \\ 2.1) \end{gathered}$	ALLOW smooth endoplasmic reticulum / SER ALLOW lipid / triglyceride, synthesis (for smooth ER)
		Total	3	
	i	E1 (erythrocytes / neutrophils, formed in the) spleen C1 (formed in) bone marrow \checkmark E2 (ciliated epithelial cells in) blood vessels C2 in, trachea / bronchi / bronchioles / airways / lungs / respiratory system / oviducts / central canal of spinal cord \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} \\ \text { 2.1) } \end{gathered}$	E1 ALLOW erythrocytes / neutrophils (formed in the spleen) C1 ALLOW lymphocytes (are formed in spleen) E2 ALLOW ciliated (epithelial cells in blood vessels) C2 ALLOW squamous (epithelial / endothelial, cells in blood vessels) DO NOT ALLOW digestive system / ileum E3 ALLOW (cell wall thickest) on side furthest from

	E3 cell wall thickest (on side furthest from stoma) C3 cell wall thin(ner) (on side furthest from stoma) \checkmark		stoma C3 ALLOW (cell wall thick(er)) on, inner side / side nearest stoma
	FIRST CHECK ANSWER ON ANSWER LINE correct answer $=2$ marks $35.7 \vee \checkmark$ 1 mark for working if final answer wrong: $($ normal production $=1.6 \times 73 \times 24)=$ 2803.2 / $2803 \checkmark$ or (difference $=3804-2803.2)=$ 1000.8 / 1001 V	$\begin{gathered} 2 \\ (\mathrm{AO} \\ 2.6) \end{gathered}$	ALLOW figure in range $35.4-36$ with up to 3 dp correct for working shown ALLOW (hospital production rate $=3804 \div(73 \times 24))=$ 2.17 or ALLOW (difference in rate $=2.17-1.6$) $=0.57$
	For answers marked by levels of response: Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3 , best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme. Once the level is located, award the higher or lower mark. The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met. The lower mark should be awarded	$\begin{gathered} 6 \\ \max \\ \text { (AO } \\ 1.1) \end{gathered}$	Indicative scientific points may include the following: erythrocyte / red blood cell biconcave / flattened, disc no nucleus contain haemoglobin flexible shape $7.5 \mu \mathrm{~m}$ diameter $2.0 \mu \mathrm{~m}$ thick ref. contain carbonic anhydrase transport oxygen transport carbon dioxide move / squeeze, through, blood vessels / capillaries space for, oxygen / haemoglobin, maximised large surface area to volume ratio short diffusion distance to, centre of cell / all haemoglobin neutrophil / white blood cell granular cytoplasm many lysosomes hydrolytic / digestive, enzymes can change shape / diapedesis / phagocytosis 10-14 $\mu \mathrm{m}$ diameter immune response innate / non-specific / inflammation destroy / engulf, (named) pathogens / bacteria move to site of infection / wound

where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.
In summary:

- The science content determines the level.
- The communication statement determines the mark within a level.

Level 3 (5-6 marks)

Full and detailed description of how each cell's specialised structure is suited to function: erythrocytes, neutrophils, squamous (epithelial) cells and ciliated (epithelial) cells.

Candidate demonstrates a good understanding of the specialised features in all of these cells, and how these features make the cells suited to their specific function.

There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative.

Level 2 (3-4 marks)

A correct feature for each type of cell stated and linked to function of cell.

There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant.

Level 1 (1-2 marks)

Some features correctly linked to a cell type. The linking of structure to function in outline only.
squamous (epithelial cells) flattened shape
very thin / (form layer) one cell thick
fit together, tightly / like a pavement
for rapid diffusion / short diffusion distance
of, oxygen / carbon dioxide / gases,
at alveoli / lungs / blood vessels

ciliated (epithelial cells)

have cilia / 'hair like' structures
which, move / beat
in rhythm
to move mucus
and trapped, pathogens / dust / debris
from, lungs / (named) airways
to move, ovum / egg
from ovary / to uterus / to site of fertilisation to move cerebrospinal fluid / ventricular fluid multilobed nucleus

Examiner's Comments

On this question candidates varied in their knowledge of the features of a good biological drawing, but the main guidelines (title, scale, no shading, do not overlap label lines) are easily taught.

OCR support

The Biology Drawing skills handbook provides support with this:
https:/www.ocr.org.uk/Images/251799-biology-drawing-skills-handbook.pdf

		with only a little structure. Communication is hampered by the inappropriate use of technical terms. 0 marks No response or no response worthy of credit.		
		Total	11	
6	a i	(similar) cells working together with, common / same / similar, (named) function \checkmark	1	Need to see both 'working together' and 'same function' The named function must be storage of starch or photosynthesis Examiner's Comments This question is asking for a definition of a tissue in the context of the parenchyma. Many candidates gave a detailed definition although some candidates did not include the idea that the cells are working together.
		Q is phloem \checkmark S is xylem \checkmark	2	Examiner's Comments This question should have been straightforward recall for candidates that were familiar with images or slides showing a cross section of a stem. Most candidates managed to interpret the photomicrograph accurately. Some less able candidates named other tissues and were presumably simply writing any name they could recall.
	b	cambium / meristem(atic)	1	Examiner's Comments Again, the majority of candidates were able to name the cambium or stated 'meristem'.
		Total	4	
		2 max for sources embryonic / embryo \checkmark fetus / fetal \checkmark umbilical cord (blood) \checkmark (adult) bone marrow (tissue) \checkmark convert somatic cell into pluripotent cell \checkmark ethical issue - must relate to one of their stated sources	2 max 2	ACCEPT e.g. breast milk / muscle / liver / placenta / etc. ACCEPT blastocyst Note: list of issues is not exhaustive credit a well expressed issue

```
ethical issue identified - such as 1
from the list below \
embryonic
E1 embryo, destroyed / killed /
discarded
E2 use of excess embryos from
assisted fertilisation
or (IVF) or
E3 debate about when life begins
or
E4 embryo cannot give consent
or
F1 obtained from, miscarried /
aborted, fetuses fetal
or
umbilical cord
U1 detached from infant at birth
anyway
or B1 harvesting bone marrow is,
painful / risky bone marrow
B2 donor babies /
or babies conceived specifically to
provide a bone marrow transplant for
a sibling
(with a condition requiring the
transplant)
a statement indicating,
judgement / opinion / understanding,
of this ethical issue }\sqrt{}{
```

F1 IGNORE ref to obtaining fetal stem cells by killing fetus
but can still access the judgement mark

Can only be awarded once the issue relating to one of their sources has been identified.
IGNORE 'playing God' as an opinion

Examiner's Comments

Most students were able to identify two correct sources of stem cells and also discuss an ethical issue associated with their use. Some students did not link the ethical issues they were discussing with the source of the stem cells, e.g. confusing embryo with fetus. There was also frequent inclusion of information which was irrelevant to the question, describing the properties of stem cells and why they were used, rather than focusing on naming the sources and discussing the ethics of their use.
Most candidates gave embryo and bone marrow as their two sources and discussed (successfully on the whole) the ethics of embryo use. Some mentioned fetal or umbilical sources but incorrectly suggested that the fetus either needed to be killed or cells removed during invasive surgery without realising that they would only be obtained from miscarried or aborted fetuses.

Total			

	host cell orvirus requires host cell, machinery / DNA / RER / ribosomes, for protein synthesis or virus does not contain, RER / ribosomes, for protein synthesis \checkmark Plasmodium idea that Plasmodium is using the host cell to hide from the immune system or for Plasmodium to complete its life cycle or for Plasmodium to use as a source of food (for, growth / reproduction) \checkmark		ACCEPT ‘malarial pathogen' for Plasmodium IGNORE eukaryotic / protoctist IGNORE it has its own, DNA / nucleus / protein synthesis apparatus IGNORE ref to just, part / stage, of life cycle IGNORE ref to organelles Examiner's Comments This was a challenging question for many, and several failed to specify which organism they were talking about. Candidates often understood that viruses couldn't use erythrocytes for reproduction but failed to make the link that viruses must use the host cell to replicate. Candidates restated the question describing that part of the Plasmodium life cycle took place in the red blood cell but failed to realise it did not complete its life cycle. Commonly, candidates said that the Plasmodium used the erythrocyte for transport and as a source of oxygen. Many candidates spoke of Plasmodium using the erythrocyte because it is injected directly into the blood by the mosquito. Only the most able candidates described how Plasmodium could evade the immune response within the red blood cell.
	1 oxygen is bound to haemoglobin (while being transported) \checkmark 2 lack mitochondria \checkmark 3 (therefore) no aerobic respiration \checkmark 4 (moved by mass flow so) doesn't	2	1 ACCEPT 'it' for 'oxygen' ACCEPT 'Hb' for haemoglobin 3 ACCEPT only respires anaerobically IGNORE ref to energy 4 DO NOT CREDIT‘ does not need, energy / ATP’ unqualified

		Total	$\mathbf{8}$	
6		Type of cell stem (cells) (1) 4	Description - any three from, by differentiation (1) (cell) elongation (1) deposition of lignin / lignification (of cell walls) (1) end walls break down (1)	4
	Total			

